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Abstract. We propose a phenomenological model of boundary lubricated junctions consisting of a few
layers of small molecules which describes the rheological properties of these sytems both in the static,
frozen, and sliding, molten, states as well as the dynamical transition between them. Two dynamical
regimes can be distinguished, according to the level of internal damping of the junction, which depends
on its thickness and on the normal load. In the overdamped regime, under driving at constant velocity
v through an external spring, the motion evolves continuously from “atomic stick-slip” to modulated
sliding. Underdamped systems exhibit, under given external stress, a range of dynamic bistability where
the sheared static state coexists with a steadily sliding one. The frictional dynamics under shear driving
is analyzed in detail, it provides a complete account of the qualitative dynamical scenarios observed by
Israelashvili et al., and yields semiquantitative agreement with experimental data. A few complementary
experimental tests of the model are suggested.

PACS. 46.30.Pa Friction, wear, adherence, hardness, mechanical contacts, and tribology
– 62.20.-x Mechanical properties of solids – 81.40.Pq Friction, lubrication, and wear

1 Introduction

Solid on solid friction has been a subject of renewed
interest among physicists in the last decade, due to
the concomitance of progress in several areas [1,2]. On
the one hand, macroscopic experiments with submicronic
resolution, performed on various materials (paper,
PMMA, polystyrene), have permitted to investigate in
detail the frictional dynamics of multicontact interfaces.
These include fine measurements of static and dynamic
friction coefficients, of their variations with, respectively,
time and velocity, and extensive analysis of the stick-slip
dynamics [3]. More recently, measurements of the d.c. [4]
and a.c. [5] elastic interface response in the “static” regime
give direct access to the pinning shear strength of the mi-
crocontacts and to the crossover between this regime and
the sliding one. Multicontact interfaces, which we define
as consisting of a large set of sparse, random regions of
real contact of, typically, micrometric size, are the rule
for contact between extended macroscopic bodies under
apparent normal pressures smaller than, typically, 10−3Y
(with Y the yield stress of the material). Due to the fact
that, in these situations, the distance between microcon-
tacts is much larger than their size, elastic interactions
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between them are, to a good appoximation, irrelevant [6],
and macroscopic friction results from the cumulative ef-
fect of individual pinning of each contact. It thus now
becomes possible to extricate, from macroscopic data, in-
formation about the respective contributions of the vari-
ous phenomena which have been known for a long time to
contribute to solid friction – namely, statistical features of
surface roughness on the micro and macro scales, elastic
compression due to asperity relief, compressive plasticity,
and shear strength and dissipation on the scale of what we
will call the junction. By this is meant a very thin region
along the real molecular interface of a microcontact be-
tween two asperities, probably of nanometric thickness, in
which most of the deformation (and damage) under shear
is localized. This region, in which most of the “frictional
action” is believed to take place, contains in particular
surface contaminants and lubricating molecules, if any.

On the other hand, the development of molecular tri-
bometers [7,8], in particular the surface force apparatus
(SFA) [7], has permitted to investigate extensively the
mechanical behavior of systems composed of a few layers
of lubricant molecules of various types, confined between
atomically smooth mica surfaces, across a contact area
of size in the 10µm range. In this regime, called bound-
ary lubrication, Israelashvili et al. [9,10] have studied
extensively the frictional dynamics under steady shear
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driving, as a function of driving velocity, temperature, nor-
mal pressure and chemical nature of the lubricant, while
Granick et al. [11] have investigated the response to an a.c.
shear force as a function of amplitude level and frequency.
A considerable body of experimental knowledge has thus
become available, involving information about periodic
and intermittent stick-slip regimes, dynamic friction force
versus velocity in steady motion, delay times for restick-
ing. On the other hand, the a.c. experiments give evidence
that, in the “sticking” state, these junctions, when thin
and compressed enough, behave as soft viscoelastic solids.
At higher levels of deformation, of order 1, they cross over
to viscous sliding. In parallel, numerical simulations [12,
13] have confirmed clearly that such highly confined lay-
ers solidify at temperatures much higher than the melting
temperature of the bulk lubricant. They also show that,
when submitted to an increasing shear stress σ, the frozen,
pinned, lubricant, melts under shear for σ = σM . More-
over, in the cases studied, dynamic hysteresis is observed.
Namely, when σ is decreased slowly from a value above
σM , refreezing only occurs at a value σL < σM . This dy-
namic bistability (the existence of a range of values of σ
where the layer can be either pinned or shear molten) has
been correlated with the stick-slip dynamics.

It then appears very desirable to build a model of
boundary lubricated friction which would encompass all
the observed dynamical behaviors, at least in a phe-
nomenological way. This would be useful in several re-
spects. First, it would help rationalize and classify the ex-
isting data in a more systematic manner. Second, it would
permit to correlate systematically the a.c. dynamical be-
havior at low and intermediate shear level of deformation
with the sliding dynamics in the perspective of becoming
able to directly infer one class of properties from the other.
Finally, such modelling is necessary to start studying ex-
actly how the physics of interasperity junctions manifests
itself on the macroscopic level of a multicontact interface.

Carlson and Batista [14] have recently proposed a phe-
nomenological model of boundary lubricated friction. This
is based upon a constitutive relation describing the friction
force on the sliding upper block of the SFA as a function
of the block velocity and of a state variable θ, associated
with the degree of melting of the layer. The friction law
assumes the existence of a static threshold force, propor-
tional to θ, below which the system is completely stuck.
Above it, sliding takes place, giving rise to additional lin-
ear viscous dissipation. The state variable evolves with an
overdamped dynamics with characteristic time τ for re-
laxation towards a stationary value varying from θmax,
at zero velocity, to θmin for V above some critical value.
That is, this model describes a system which, when it
stops sliding, gradually transforms into a solid which re-
mains infinitely rigid up to a stress value saturating at
θmax. Since it explicitly contains a dynamical transition
under stress, it permits to account for

- stick-slip dynamics of the type observed by Israe-
lashvili et al.;

- the existence of an upper critical value of the driving
velocity, vc, above which stick-slip disappears discon-
tinuously and steady sliding settles in;

- the delay before regrowth of the static “stiction spike”
observed in “stop-start” experiments, in which steady
driving at v > vc is suddenly stopped, then resumed
at the same velocity after a variable waiting time.

This model, although clearly useful to analyze sliding,
suffers from two shortcomings. On the one hand, evaluat-
ing the values of the phenomenological parameters seems
quite difficult, as they would have to be extracted from
the full analysis of the highly nonlinear stick-slip dynam-
ics. On the other hand, since the pinned state is assumed
completely rigid, it can neither describe the a.c. viscoelas-
tic response measured by Granick et al., nor connect it
with the sliding regime.

For these reasons, it appears useful to develop a more
complete phenomenological model which describes the
rheological properties of both the static, frozen, and slid-
ing, molten, states, as well as the dynamical transition
between them. The purpose of the present article is to
propose such a model, for boundary lubricated junctions
containing small molecules only. For reasons which will
become clear shortly, we call it the “lumped junction”
model.

In Section 2 below we formulate the basic equations
and define two dynamical regimes, according to the level
of internal damping of the viscoelastic lubricant layer. Re-
sponses under various types of shear driving are then an-
alyzed in detail in Sections 3 and 4 which deal, respec-
tively, with the overdamped and underdamped limits. In
Section 5, we discuss our results in the light of existing
experimental results, show that the underdamped version
of the model provides a satisfactory semiquantitative ac-
count of existing observations, and suggest a few com-
plementary experiments which could be of help for more
quantitative comparison and provide further tests of the
model.

2 The lumped junction model

It is clear from experiments that a complete rheological
description of the lubrified joints must be viscoelastic, but

- essentially of the Kelvin type close to equilibrium
(“frozen” state)

- of the Maxwell type beyond some stress threshold
(“shear molten” state).

So, it cannot be expressed only in terms of the velocity
of the upper surface of the joint (strain rate of the lubri-
cant layer), it also has to involve the associated displace-
ment (strain), knowing that, when the stress vanishes, the
sliding (flowing) layer can solidify essentially on the spot.

Hence a pretty obvious formulation, which is summa-
rized in the following equation. Call:

• M the mass of the joint (layer plus moving upper
plate),
• x the position of its center of mass,
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• K the stiffness of the external spring through which
the external shear force is applied,
• ρ(t) the position of the external end of the spring

(pulling point),
• h the thickness of the layer,
• a2 the area of the joint,
• η the viscosity of the layer in the linear regime, ex-

plored by Granick and coworkers by measuring the re-
sponse of the static system to an oscillating shear force
of very small amplitude.

We propose that the dynamical equation for the joint
reads:

Mẍ+
ηa2

h
ẋ+

V0

b
sin
(x
b

)
+K

(
x− ρ(t)

)
= 0. (1)

That is, we assume that the junction dynamics can be
lumped into that of a single degree of freedom – transla-
tion of the center of mass along the direction of the applied
shear force. A full description of the mechanical response
of the system would of course involve all the (positional
and conformational) degrees of freedom of the lubricant
molecules. However, one may reasonably assume that, in
the case of small molecules, the corresponding character-
istic time scales are much smaller than those of the global
(e.g. stick-slip) motion. The single degree of freedom re-
duction then corresponds to a quasi-adiabatic treatment
of the fast internal degrees of freedom [15]. Such a process
is equivalent to separating the layer mechanical response
into an average total force, varying on the slow time scale
of global motion, and a fast noise term, which we neglect
at this stage. The non instantaneity of the fast internal
dynamics gives rise to a retardation of the layer response,
i.e. to a dissipative contribution (here modelled by the ηẋ
term in Eq. (1)) to the average force.

Clearly, such a separation of time scales becomes
problematic in the case of long chain molecules, where
configurational relaxation involves a broad spectrum of
internal times the longest of which may become compa-
rable with the global scale. The model can therefore only
apply as such to the case of small molecules. We then make
the ansatz that the internal stress σ on the joint is related
to its strain x/h and strain rate ẋ/h by:

σa2 =
ηa2

h
ẋ+

V0

b
sin
(x
b

)
· (2)

In other words, we state that the joint is moving dissipa-
tively in a periodic potential V (x) = V0 cos(x/b), which
we assume for simplicity to be sinusoidal. If let to relax in
the absence of external force, it will settle to equilibrium
in one of the equivalent minima of the potential. The as-
sumed multiplicity of pinning wells describes phenomeno-
logically the possibility of resolidifying “on the spot” after
sliding. Its seems natural to take for the space period 2πb
of the pinning well structure that of the microscopic wall
potential, i.e. b is of atomic order.

According to ansatz (2), close to equilibrium the linear
mechanical response of the system is that of a viscoelastic

solid. Namely, its linear response (as measured by experi-
ments of the Demirel-Granick type [16]) is

σ = ηε̇+Gε (3)

with

ε = x/h; G =
V0h

b2a2
· (4)

The internal viscosity η can be thought of as resulting from
the dissipation associated with the above mentioned fast
molecular processes. Here, we assume it to be frequency
independent, in accordance with our assumption of a wide
separation of time scales.

When writing equation (1), we have neglected noise.
We will come back to this later. For the moment, our
aim is to try and classify the possible dynamical regimes
of a system obeying this deterministic equation, which is
simply that of the driven damped pendulum. It has been
extensively studied analytically and numerically, and its
various regimes have been classified, in particular in the
context of studies of the dynamics of Josephson junctions,
where it corresponds to the “lumped circuit model”. We
are therefore in the comfortable position where we can
draw extensively upon previous results, which we will now
transcribe into our language. We follow especially closely
the article of Ben Jacob and Imry [17]. We give in the
Appendix a table of correspondence between the variables
and parameters of our mechanical problem and those of
the Josephson one.

In the absence of external force (K = 0) equation (1)
involves two times:

- the inertial time associated with the internal inertial
frequency of the joint, defined by:

ω2
0 =

V0

b2M
=
Ga2

Mh
(5)

- the internal viscous relaxation time

τ =
η

G
· (6)

Setting:

x̃ = x/b; t̃ = ω0t

K̃ = K/K0; K0 = V0/b
2 (7)

ṽ = v/v0; v0 = bω0

we rewrite equation (1) as:

d2x̃

dt̃2
+ Γ

dx̃

dt̃
+ sin x̃+ K̃

(
x̃− ρ̃(t̃)

)
= 0 (8)

where Γ = ω0τ .
We will from now on drop the tildas for simplicity. It is

immediately clear that, in the absence of external driving,
the dynamics of the joint depends on the single parameter
Γ = (ω0τ), which measures the level of internal damping
of the joint.

Two regimes can be clearly distinguished, namely the
overdamped (Γ � 1) and the underdamped (Γ < 1) one.



16 The European Physical Journal B

Fig. 1. Determination of the equilibrium displacement of the
upper surface of the junction, x∗, for position ρ of the external
driving point, for the setup schematized in the inset. V ′(x) is
the pinning force, the slope of the straight line is the external
stiffness.

3 The overdamped regime: Γ � 1

Inertia can be neglected, and, as long as the driving ve-
locity is small enough (see below), the system equilibrates
quasi adiabatically, via rapid viscous damping, in the in-
stantaneous potential:

U(x, ρ) = − cosx+
K

2
(x− ρ)2. (9)

The joint displacement x∗(ρ) is determined by ∂xU = 0,
i.e. is obtained by intersecting (sinx) with the straight
line (−K(x − ρ)) – see Figure 1. Let us now concentrate
on the case where the external end of the spring is pulled
at constant velocity:

ρ = vt. (10)

Two situations are possible, depending on the value of
the reduced spring stiffness as compared with the max-
imum reduced stiffness of the pinning potential: Km =
K−1

0 max(|d2(V/V0)/dx2|) = 1.

3.1 K > 1

The intersection is unique, and moves smoothly towards
increasing x∗ as ρ increases. The friction force, due to the
viscous drag, is of order Γv(dx∗/dρ). It vanishes smoothly
with the pulling velocity.

The joint velocity v(dx∗/dρ) = vk/(k + cosx∗) oscil-
lates periodically about the pulling velocity without van-
ishing. Sliding is smooth, no stick-slip occurs.

One easily checks that the quasiadiabatic approxima-
tion is valid as long as the physical velocity remains much
smaller than v1 = b/τ . At larger pulling velocities, the
viscous drag force must be computed directly from the
solution of the inertialess version of equation (8).

3.2 K < 1

As seen in Figure 2, as K decreases below 1, ranges of
values of ρ develop in which the sinusoid and the loading

(a)

(b)

(c)

Fig. 2. (a) Local equilibrium construction for K < 1. The
system exhibits a small range of multistability. When driven
towards increasing x, it remains on branch (A0A) up to the
spinodal point S+. (b) Corresponding pinning force Fp(ρ). The
shaded part of the hysteresis loop is the energy dissipated when
moving by ∆ρ = 2πb. (c) Total energy U(x) for values of ρ
corresponding to cases (I), (II), (III) of Figure 2a.

straight line exhibit multiple intersections. The smaller
K, the more numerous the solutions of the instantaneous
equilibrium equation.

(a) Let us first consider the case where K is only
slightly smaller than 1 (Fig. 2a). For (2n + 1)π − δρs <
ρ < (2n+ 1)π+ δρs, with δρs ≈ (23/2/3)(1−K)3/2, there
are three such intersections. The system is multistable over
the corresponding ranges of ρ values, in these ranges the
pinning force opposing the pulling one,

Fp(ρ) = sinx∗(ρ)

is multivalued (see Fig. 2b). The reentrant branch S+BS−
in Figure 2b corresponds to unstable equilibrium posi-
tions. The other two branches describe locally stable equi-
libria. In the noiseless system considered here, no jump
above the energy barrier of the total potential U(x, ρ)
(Fig. 2c) is possible.
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Fig. 3. Total energy U(x) in the highly multistable case K �
1, drawn for ρ = 0, K = 0.04.

So, when the system is pulled to the right at vanish-
ingly small velocity, its representative point follows branch
(+) of the hysteretic Fp(ρ) curve, up to the point S+,
where ρ = ρs+ = (2n + 1)π + δρs, and the pinning force
Fp(ρs) = (1−K2)1/2. At this point, the (+) minimum of
U(x, ρ) (Fig. 2c) vanishes – a spinodal instability occurs –
and the overdamped system jumps rapidly into the closest
stable minimum P+. This scheme is exactly analogous to
that analyzed for a real contact between two asperities,
by Caroli and Nozieres [6].

The energy dissipated when moving over a period, 2πb,
of the pinning potential V , is the area of the hysteresis
cycle shown in Figure 2b or, equivalently, the discontinuity
∆Ueff of the effective potential Ueff (ρ) = U(x∗(ρ), ρ) at
the spinodal point.

The corresponding motion may be termed stick-slip,
since it is composed of alternating quasi-sticks, during
which the system is steadily pulled by the spring out of
a well of the pinning potential V , and slips which occur
when the corresponding metastable equilibrium becomes
unstable. It is during these fast jumps into the next stable
equilibrium position that dissipation occurs.

Note, however, that the amplitude of these slips,
≈ 2πb, lies in the subnanometric range, so that they
should not be observable in practice, and what will be
measured in such a regime is the average dynamical fric-
tion force, given, in this very low velocity regime, by:

F 0
d = F̄p(v → 0) =

∆Ueff

2πb
=
(
1−K2

)3/2
. (11)

So, the elastic multistability results in a finite value of the
low velocity dynamic friction. This is to be compared with
the static threshold

Fs = Fp(ρs) =
(
1−K2

)1/2
. (12)

Note that both values depend on the spring stiffness, the
value of which controls the strength of the elastic hyste-
resis.

This regime holds as long as the time tJ necessary to
“jump” from the saddle point S+ down to the stable equi-
librium point P+ is smaller than the time for the spring
to sweep the system at velocity v by the jump length,
≈ (1 −K)1/2. Estimating the jump time as was done in
reference [6], we find tJ ≈ (Γ 2/vK)1/3, we conclude that
the imperfect stick slip described above should persist up

Fig. 4. Reduced external loading force K(vt−x) versus ρ(t) =
vt for an overdamped junction with Γ = 10, K = 10−1. The
motion evolves continuously from atomic stick-slip for v � 1
to modulated sliding.

to v ≈ v1(K) ≈ (1 −K)3/4/Γ (i.e. to physical velocities
of order (1−K2)3/4(b/τ)).

For higher velocities, once the system has been driven
up to the spinodal configuration, it starts sliding and never
“resticks” again in any potential well, as energy is fed in at
a rate large enough to compensate viscous damping. As in
the K > 1 case, its velocity is smoothly modulated about
v, the amplitude of the modulation of course decreases as
the pulling velocity increases.

(b) When K decreases, the number of extrema of
the instantaneous potential U increases (see Fig. 3). For
K � 1 – which, as we shall see in the next section,
is the case in boundary lubrication experiments – U is
very highly multistable. Nevertheless, the dynamical be-
haviour remains qualitatively similar to that described
for case (a), namely, in the stick-slip regime found at
v < v1(K) ≈ K1/2/Γ , the fast slip brings the system
into the potential well immediately next to the spinodal
point (∆x ≈ 2π)1.

This overdamped dynamics is illustrated for K = 0.1,
Γ = 10, in Figure 4. The corresponding average dynamical
friction force is plotted in Figure 5.

In conclusion, our model predicts that when an over-
damped junction is driven at constant velocity through
a compliant spring, after being initially loaded up to its
static threshold, it performs a modulated motion which
evolves continuously between:

- strongly dissymetric “stick-slip” oscillations of molec-
ular amplitude at very low velocities;

- regular sliding with a velocity very slightly modulated
about the pulling one.

The K-dependent, finite, v → 0 limit of the dynamical
friction force averaged over many oscillations F 0

d decreases
from 1 to 0 as K increases from 0 to its critical value 1.
F̄d(v) then increases with v and goes asymptotically to its
viscous limit F viscd (v) = Γv (see Fig. 5). Note that the
convergence towards this limit is relatively slow.

1 In the language of Josephson junctions, the phase slippage
is by only one fluxon.
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Fig. 5. Average friction force F̄d(v) for an overdamped system
with Γ = 10, K = 10−1.

4 The underdamped regime: Γ < 1

In this regime, the system develops a qualitatively differ-
ent dynamical behavior. Namely, when driven by a con-
stant applied (non dimensional) force F , it exhibits dy-
namical hysteresis.

(a) For F > FM = 1, equilibrium is impossible, the
system slides steadily.

(b) For F < 1, it can sit in one of the equivalent sta-
ble equilibrium positions xst(F ) = sin−1 F + 2pπ. How-
ever, numerical [18] and, later, analytical [19] investiga-
tions have shown that, for Γ < 1.1, in a finite range of
values of σ: FL < F < FM = 1, this equilibrium solution
coexists with another, “running” one, in which the system
slides continuously with a periodially modulated, finite ve-
locity2. That is, in this hysteretic range, there are two dy-
namical attractors, the basins of attraction of which, in the
phase space (ẋ, x), have been studied in detail by Imry and
Schulman [19]. Which of them is reached after the initial
transient depends on the initial conditions: if the system
is launched with a large enough energy, since damping is
small, the input from the drive is able to compensate for
the dissipation, allowing the system to run away perma-
nently. For lower initial energy, on the contrary, it relaxes
down into one of the pinning wells.

This behavior, observed in the low temperature hys-
teretic Josephson junctions, is precisely what has been
found numerically by Thompson and Robbins [12], and
by Persson [13], in their simulations. One may check that
these were indeed performed with parameters correspond-
ing to our underdamped regime (Γ < 1).

The width of the hysteretic range – the range of coex-
istence of the pinned frozen state and of the shear-molten
one – decreases with increasing Γ : FL increases from 0
(for Γ → 0) to 1, for Γ = 1.1. A numerical plot of FL(Γ ),
extracted from the data of reference [18], is shown in Fig-
ure 6. We show in Figure 7 the schematic shape of the
hysteretic F versus 〈ẋ〉 curve, for a system with damping
coefficient Γ = 0.5, driven by a constant force (infinitely

2 This is the relevant regime for Josephson junctions at low
temperature. It has been identified and studied experimentally
in that context.

Fig. 6. Lower limit of the range of coexistence of the pinned
frozen state and the shear molten one, versus internal damping
coefficient Γ , as obtained from the data of reference [18].

Fig. 7. Average friction force in the molten (running) state
(branch R) and in the pinned frozen state (branch P) for an
underdamped junction with Γ = 0.5. The range of dynamic
bistability extends from FL ≈ 0.6 to 1.

compliant spring limit). 〈ẋ〉 is the time averaged velocity
in the running state.

We now want to analyze how this underdamped sys-
tem responds to pulling at constant velocity v through a
spring of finite compliance K. The initial loading phase,
in which the pinned system is pulled from its initial equi-
librium position x = 0 up to the spinodal threshold S+,
where shear melting occurs, does not differ from that for
the overdamped case. But, once sliding starts, since the
internal damping time (ω2

0τ)−1 is now small with respect
to the period of oscillation in a “pinning well”, ω−1

0 , en-
ergy dissipation is slow. This results in the fact that the
length of the slip, at the end of which the system gets
pinned again, varies substantially with the values of the
three parameters Γ, K, v.

For a detailed analysis of slip length and duration, we
refer the reader to reference [17]. We only reproduce here
the most salient features of the results obtained by these
authors:

- for K > Km = 1, the only stationary regime is mod-
ulated sliding. As in the overdamped case, there is no
static threshold, dynamical friction is viscous.
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Fig. 8. External spring elongation for an underdamped junc-
tion (Γ = 0.24) driven by a weak spring (K = 10−2) at vari-
ous velocities. Inset shows the detail of underdamped oscilla-
tion in the pinning well at the end of a slip. At low velocity
(v = 5 × 10−2; thick line), periodic stick-slip occurs. Between
v = 0.82 (thin line) and v = 0.83 (medium thick line) the
motion bifurcates to modulated sliding.

- for K < 1, the velocity regimes must be classified ac-
cording to the respective values of v and v0 = 2πN/TN ,
where N and TN are the (reduced) length and duration
of the slip.

(i) When Γ 2 � K � 1, at low velocities, the sys-
tem performs periodic motion the basic unit of which is
composed of a stick period followed by several slowly at-
tenuated large oscillations. In these “bouncing slips” the
representative point, starting from S+, overshoots the low-
est well of the total potential U (see Fig. 3) and bounces
a few times across the modulated parabola before damp-
ing drives it into one of the pinning wells, where it gets
slowly refrozen. We will see that, in practice, this regime
is irrelevant to existing experiments.

(ii) For K < Γ 2 < 1 the system, while underdamped
when relaxing inside a pinning well, is overdamped when it
is depinned and slips. At low velocities, it performs regular
stick-slip. The slip length depends on the relative values of
K and Γ Clearly, it increases when damping and/or stiff-
ness decrease. The duration of the slip is roughly Γ/K. As
v increases, so does the time for escaping from the spinodal
region, since, due to the drive, the spinodal region itself
slips in the jump direction. At a critical velocity vc the
drive overcomes the damping before repinning can take
place: the motion bifurcates discontinuously from stick-
slip to modulated sliding.

(iii) For v > vc, the system settles in the running (pe-
riodically modulated sliding) state.

This behavior is illustrated numerically in Figure 8,
for K = 10−2, Γ = 0.24, and several values of the reduced
velocity v. The oscillations shown in the insert correspond
to the underdamped bounces within one pinning well. The
slip length ∆xsl is on the order of 12 periods of the pinning
potential, much larger than in the overdamped regime.

(a)

(b)

Fig. 9. (a) Same as Figure 8 for large velocities. The level of
dynamic friction increases, leading to gradual disappearance of
the stiction spike. (b) Decrease of the modulation amplitude in
the sliding state with increasing v (thin: v = 1; thick: v = 5).

The delay in the beginning of the slip due to the compe-
tition between the crossing of the spinodal instability and
the drive results in a slight increase of the maximum force
(“static threshold”), while its minimum value increases
by a comparable amount. At the end of the slip the sys-
tem is captured within a pinning well which comes closer
to the spinodal as v increases. The period of the stick-
slip, essentially controlled by the stick time, scales roughly
as V −1.

For these values of K and Γ , the critical velocity vc
at which stick-slip disappears abruptly lies between 0.82
and 0.83. As v is increased slightly above vc, the initial
transient exhibits a “stiction peak”, the shape of which is
practically identical with the first stick-slip immediately
below vc. In this sliding regime, the average stationary
dynamical friction force remains practically constant up
to v ≈ 1, then increases with v (see Fig. 9a) while the
force modulation decreases (Fig. 9b). For v = 10, F̄d(v)
is practically equal to its asymptotic viscous value Γv.
This rise of the stationary force level leads to the gradual
disappearance of the stiction peak. Note that the height of
this peak – corresponding to the static threshold, remains
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(a)

(b)

Fig. 10. (a) Simulation of a stop and go experiment: the un-
derdamped system (Γ = 0.24, K = 10−2) is driven at constant
velocity v = 1 from rest into modulated sliding. The drive is
stopped at t = 300, and resumed at t = 300+ts. Here (ts = 20)
repinning during the stop phase leads to a second stiction spike
of reduced height ∆F . (b) Height of the second stiction spike
∆F versus stopping time ts.

practically constant (of order 1 in our reduced units), all
through this evolution.

This scenario is robust against variations of the stiff-
ness. Decreasing K down to 5× 10−5 leads to practically
unchanged force maxima and minima. Accordingly the
slip length scales as K−1. The critical velocity decreases
very slowly with K. For K = 5 × 10−5, vc ≈ 0.3. The
dynamic friction force F̄d(v) in the steady sliding state,
above vc, remains quasi-constant up to v ≈ 1 whatever K.
This can be understood easily with the help of Figure 7:
above the bifurcation, the system, after the initial depin-
ning transient, gets trapped into the running state, where
the friction force is constant (up to the small modulations
shown in Fig. 9b). So, F̄d(v) is practically identical with
the curve F (〈ẋ〉) describing the “running state” branch
of the hysteretic response to a constant shear force. On
this branch, the force remains very close to its zero veloc-
ity limit FL, roughly of order Γ (see Fig. 6), up to the
crossover with the bare viscous curve, which therefore al-

Fig. 11. Reduced spring elongation versus time for the loading
protocol ρ̇(t): for t < 3000, v = 0.9. For t > 3000, v(t) = ρ̇ is
ramped down linearly with v̇ = −10−4. The system remains in
the metastable molten state down to v = 0.52.

ways occurs in the range v ≈ 1. This fixes the upper limit
of the velocity range in which the system can be said to
slide under constant dynamic stress.

Finally, decreasing Γ leaves this description un-
changed, apart for a global scaling of velocities by a factor
on the order of Γ−1.

We have also simulated numerically “stop and go” ex-
periments [9]. In the case displayed in Figure 10a, the sys-
tem has been driven at the constant velocity v = 1 until it
settled in the quasi-steady sliding regime. At t0 = 300, the
driving was stopped, then resumed (with the same v = 1)
at t1 = t0 +∆tstop, with ∆tstop = 20. During the stopping
time, the system relaxes into the pinned state, so that,
when driving is restarted, the system must overcome a
stiction peak which is practically equal to the initial one.
Of course, the second peak only appears when the stop-
ping time is larger than the typical energy relaxation time,
≈ Γ−1, of order 4 in the case shown in Figure 10b.

Finally, another question to be considered is concerned
with the above mentioned specificity of the underdamped
regime, namely dynamical hysteresis and the possibility
of observing it directly. In this perspective, we have stud-
ied the following numerical protocol (Fig. 11): the system
is set into steady sliding motion (in the case shown, at
a velocity just above vc). Then, the driving velocity is
slowly ramped down linearly. We find that it remains in
the sliding state (the “running state” of Ref. [17]) down
to a velocity vmin much smaller than vc (≈ 0.8), where
it finally flips back into the stick-slip regime. We find
that vmin decreases slowly – the width of the hysteretic
range increases with decreasing stiffness K (for example,
vmin(K = 10−2) ≈ 0.6).

However, even for K ≈ 10−3, this width remains much
smaller than that calculated for driving at constant exter-
nal force. This is to be attributed to the fact that, at a
given v, the modulations of the sliding trajectory in phase
space are found to increase with the stiffness of the pulling
spring. The system flips back into the pinned state pre-
liminary to stick-slip as soon as its trajectory crosses the
separatrix between the two regimes. As v is reduced, this
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occurs all the sooner that the modulation amplitude is
larger. So, the hysteresis range shown in Figure 7 should
be considered only, in our mechanical case, as a theoreti-
cal limit corresponding to an infinitely compliant driving
system.

5 Discussion

We must now confront the results of the above analysis
with the existing experimental data on junctions lubri-
cated with small molecules.

Let us first consider the results of Israelashvili and
coworkers concerning the sliding dynamics under driving
at constant velocity, with ultra thin films (typically, two
molecular layers) of OMCTS and hexadecane [9].

The qualitative dynamical scenario which they observe
is identical with that corresponding to the moderately
underdamped regime of our lumped junction model, de-
scribed in the preceding section. Namely, up to v = vc,
periodic stick-slip prevails. At vc, stick-slip disappears dis-
continuously, and steady sliding sets in. In a moderate ve-
locity range above vc, an initial stiction peak is observed,
and the measured dynamical friction force (corresponding
to our average F̄d) is quasi v-independent, and equal to
the minimum value of F at the end of the slip. Erratic
stick-slip is often observed in a narrow v-range above vc.
We will come back to this below.

Using the results of Section 4, we evaluate the inter-
nal damping parameter Γ from the measured values of
Fmin/Fmax in stick-slip. This, according to our model, is,
up to small corrections due to the weak variations of the
static force threshold with v, equal to the reduced value
of FL (the reduced value of the low-v dynamic force on
the running branch). Knowing FL, we deduce Γ from the
master curve (Fig. 6). From Figures 7 and 12 of reference
[9], we evaluate:

- for OMCTS, Γ ≈ 0.5;
- for hexadecane, Γ ≈ 0.45.

Since these are only rough orders of magnitude, we will
take as an indicative value for these experiments Γ = 0.5.

On the other hand, our reduced stiffness parameter
is measured in units of (Mω2

0) ≈ Fmax/b. In the experi-
ments, Fmax ≈ 10 mN, the machine stiffness is of order
500 N/m, the mass M = 20 g. Assuming the period (2πb)
of the pinning potential to be of order 0.3 nm – a value
suggested by the structure of the mica cleavage plane, we
get K ≈ 2× 10−6. For these K and Γ , we calculate that,
in physical units:

vc ≈ 0.25ω0b = 0.25(Fmaxb/M)1/2 (13)

which yields a critical velocity of about 1µm/s, i.e. of
the order of those observed for OMCTS and hexadecane.
Note that (13) has the form of the expression proposed by
Thompson and Robbins [12]. Our model thus predicts that
their numerical constant C, here equal to 0.25, is in fact
a slowly decreasing function C(K,Γ ) of both the reduced
stiffness K and the internal damping parameter Γ .

With the same parameters, we obtain: ω0 ≈ 104 rad/s,
from which we estimate τ ≈ 5× 10−5 s, and, on the basis
of our above stop and start simulation, a refreezing time
∆tfr ≈ (ω0Γ )−1 of order 2× 10−4 s. That is, we find that
the delay before refreezing should be much too small to
be observable. This is indeed the case for OMCTS – but
such an argument is, of course, only of the noncontradic-
tory kind. For hexadecane, observed refreezing times are
of the order of seconds – that is, hugely larger than the
above estimate. This leads us back to analyzing the physi-
cal assumptions implied by ansatz (2). Guided by the idea
of “refreezing on the spot”, and by the fact that the mica
confining plates are atomically quasi perfect, we have as-
sumed that the conservative part of the average friction
force has a strong (periodic) non linearity. On the other
hand, we have assumed for simplicity, in the absence of
further information, that the dissipative part is both lin-
ear and non retarded. Both these approximations become
doubtful in the case of chain molecules such as hexade-
cane: indeed, there are all reasons to believe that sliding at
high enough velocity may induce conformational changes
and/or further ordering under shear – a phenomenon ob-
served for this material during initial loading. Such pro-
cesses, if present, lead to important non Newtonian effects
and to the possibility that internal viscous relaxation be-
comes much more strongly retarded. If this is the case, our
model in its present simple version is certainly insufficient
for such materials.

In view of the possibility that slower processes might
become relevant in sliding, it would be interesting to check
whether the refreezing time exhibits any dependence on
the duration or length of sliding prior to stopping.

Let us now come back to our second important sim-
plification – the neglect of noise. The effect of introducing
white noise into equation (1) has been studied by Am-
begaokar and Halperin [20] in the overdamped case, and
by Ben Jacob, Bergmann and Schuss [21] in the under-
damped, hysteretic one3.

Noise enables the system to perform activated jumps
above energy barriers. In the overdamped case, this entails
that “premature” jumps out of metastable equilibrium oc-
cur with a finite probability. The system can slip before
reaching the spinodal point. This results in the develop-
ment of irregularity of the stick-slip motion, which should
show in particular through a dispersion of the static force
threshold4.

In the underdamped case, one expects a more spec-
tacular effect. Indeed, the noise activated jumps are now
able, in the range of dynamic bistability, to activate jumps

3 Note, however, that these authors concentrate mainly on
calculating the effect of noise on the average voltage associated
with a given current in the Josephson junction, the equivalent
of which, for our problem, would be the average velocity at
strictly constant stress, a quantity which is not directly acces-
sible in friction experiments.

4 Such effects could be responsible for the self-accelerating
drift effects observed by Reiter et al. [22] following a sudden
jump of the maximum applied shear force up to a value close
below the static threshold.
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between the pinned and the running state. This results in
the system spending on average, in this range, a finite
fraction of the time in each state. The fraction spent, e.g.,
in the running one, increases from 0 to 1 as the average
reduced force level increases from FL to 1.

In practice, under loading at constant velocity through
a spring, this should give rise, above vc, to a regime with
a random alternation of sliding periods separated by a
repinning event followed by reloading, i.e. by a stiction
peak. This is precisely what is observed in experiments as
erratic stick-slip. It would therefore be of interest to study
how the average recurrence time of the stick-slip events,
in this regime, varies with v/vc.

Of course, such a phenomenon may also result from
non-intrinsic, experimental noise. This brings up the ques-
tion of the level of the intrinsic noise. Close to equilibrium
under zero shear, this is related to the internal viscos-
ity η by the fluctuation dissipation theorem. However, no
such a systematic relation holds for the out of equilibrium
system. This points to the interest of developing a more
microscopic model of the junction dynamics, in the spirit
of the studies of the dynamics of the Frenkel-Kontorova
model and randomly pinned charge density waves [22].

It is reasonable to expect the noise level to increase
when the layer approaches melting, as is suggested by the
strong increase in stick-slip irregularities found numeri-
cally by Thompson and Robbins [12].

Direct information can only be obtained either from
such realistic simulations, or from experiments. In the
sheared pinned state (i.e. below the static threshold), this
would mean measuring the a.c. linear visco elastic re-
sponse of the junction under finite d.c. shear. In practice,
this could be performed by superimposing a low and a
high frequency driving excitation. The noise level would
then be obtained via the fluctuation-dissipation relation.

Up to now, we have focussed our discussion on exper-
iments concerning the dynamical behavior under driving
at constant velocity. Although these provide enough data
for a reasonable check of the model, it would be desirable
to get fuller confirmation by proceeding as suggested in
Section 2. Namely, in principle, ω0 and τ could be ob-
tained directly from the measurement of the elastic and
loss moduli in an linear a.c. reponse experiment.

Several such experiments have been performed by
Granick et al. [11,16,23] Those in which the layer behaves,
at small strain, as a viscoelastic solid, appear all to pertain
to the regime of strong internal overdamping (typically,
we estimate Γ values of the order of 102 at least), in con-
tradistinction with the conditions prevailing in the work
of Israelashvili et al. This difference is certainly assignable
to the fact that the two sets of experiments have been per-
formed at quite different levels of normal load L (typically
more than 10 times lower in the a.c. conditions than in the
sliding ones). We are therefore unable, for the moment, to
connect both sets of data. Clearly, it would be very useful
that the two sets of measurements be performed on one
same sample under the same conditions, in particular the
same normal load. The orders of magnitude of Γ and ω0

evaluated above suggest that, for these underdamped sys-

tems, it would be necessary to work in the kHz frequency
range in order for loss effects to be safely measurable.

This leads us to one further remark concerning normal
load effects within the underdamped regime itself. We just
noticed that, for a layer of given thickness, Γ appears to
be L-dependent. Most probably, the same is true of the
pinning strength and, hence, of the reduced stiffness. This
will result in an L dependence of the reduced critical ve-
locity – i.e. of the constant C(K,Γ ) appearing in expres-
sion (13). This should be kept in mind when analyzing vc
versus L data.

Finally, one might imagine to try and evaluate the de-
gree of validity of our assumption of a perfectly periodic
pinning potential by looking for parametric resonances
giving rise to force jumps analogous to the Josephson steps
[24]. These have been studied by Helman et al. [25] for our
mechanical system. This would mean superimposing to a
steady drive at mean velocity v > vc a velocity modulation
at frequencies multiples of 2πb/v, i.e. in the kHz range.

In summary, we have proposed here a simple phe-
nomenological model for highly confined, ultra-thin lay-
ers of small lubricant molecules. Though schematic, it
accounts correctly for all the qualitative features of the
sliding dynamics as studied by Israelashvili et al., and
is compatible with their quantitative measurements. It
emerges from our discussion that these d.c. investigations
all deal with layers in the regime of moderate internal
underdamping – hence their dynamic bistability. On the
contrary, the a.c. responses studied by Granick et al. are
concerned with the opposit, strongly overdamped (hence
monostable) regime.

Performing both types of experiments under the same
conditions would provide a firmer benchmark for a model
which, if legitimate, could be used as a basis for further
progress towards bridging between nanotribology and fric-
tion on a larger scale.

Appendix

In the (resistively shunted) lumped circuit model [17,24],
the basic equation describing the time evolution of the
voltage drop V across a Josephson junction driven by a
current I is:

CV̇ +
V

R
+ IJ sin θ = I (A.1)

V = Φ0θ̇, (A.2)

C is the capacitance of the junction, R its normal resis-
tance, IJ the Josephson current amplitude, Φ0 the flux
quantum, θ the order parameter phase difference across
the junction.

This junction may be part of a superconducting loop
of self-inductance L which, in the presence of an external
magnetic field, encloses a flux Φext.
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The correspondence between the parameters stan-
dardly used in the Josephson problem and ours is the
following table.

Josephson Friction

phase: θ upper surface reduced

position: x/b

capacitance: C mass: M

inverse resistance: R−1 ηa2/h

LJ = (IJ/Φ0)−1 (V0/b
2)−1

Josephson frequency: ωJ ω0

τm = LJ/R τ

K = LJ/L (L = external K̃ = K/K0

self inductance)

Φext(t)/Φ0 ρ(t)/b
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